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Finite-size corrections for nested Bethe ansatz models and 
conformal invariance 

H J de  Vega: 
CERN,  CH-1211 Geneva 23, Switzerland 

Received 20 March 1987 

Abstract. The method presented here permits us to systematically compute physical magni- 
tudes for large but finite size in theories solvable by the nested Bethe ansatz. The value 
of the central charge c and the surface tension are explicitly calculable in this way. For 
the fundamental vertex and spin models associated to simply laced Lie algebras, c turns 
out to be equal to the rank of the algebra. 

1. Introduction 

Integrable theories are those possessing as many commuting and conserved physical 
quantities as degrees of freedom, so there is an  infinite number in the thermodynamical 
limit. The explicit solution of these models is to a large extent possible through the 
use of the Bethe ansatz and its generalisations [l]. 

The Bethe ansatz for the eigenvectors lead a set of algebraic equations whose 
roots determine the common eigenvalues of the commuting operators of the theory 
including the Hamiltonian. In the thermodynamic limit the number of equations and  
roots tends to infinity and  the Bethe ansatz equation ( B A E )  usually yields a set of linear 
integral equations for the densities of roots. Fourier transforms solve the equation in 
this limit. However, the explicit resolution of the B A E  for a finite-size N is a formidable 
problem. Besides its interest from the point of view of integrable theories, the finite-size 
resolution of these models provides deep insights on their conformal content when 
they are gapless. For models with non-zero gap it gives information on the surface 
tension. 

A method to systematically compute large but finite-size corrections in integrable 
theories was presented in [2] for the six- and  eight-vertex [3] models and the associated 
magnetic chains. These methods are elaborated and developed in [4-71. 

The aim of this paper is to generalise the method of [2] to theories solvable by the 
nested Bethe ansatz ( N B A ) ,  i.e. theories with the following internal structure: vertex 
models where the links can be in q different states (with q>2) or q-component spin 
models. The field theoretical models solvable by N B A  usually exhibit non-Abelian 
internal symmetries like the chiral fermionic models of [8-lo], the Gross-Neveu model 
and the sigma models connected with multiflavour fermionic models [ 111. 

t Permanent address: LPTHE, Universite P et M Curie, Tour 16, ler itage, 4 place Jussieu, 75230 Paris 
Cedex 05, France. 
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The calculation method presented here is based on a new integral representation 
for the physical quantities (such as the energy) which are exact for all N (the number 
of sites). These integral representations generalise those of [2] and [3] and they contain 
functions d , $ ( A )  (1 s Is r, r = number of steps in the N B A )  that can be thought of as 
finite-N generalisations of the densities of roots. We find that the contribution of the 
different steps of the NBA simply adds. The expressions obtained appear as infinite 
series (equations (2.31)-(2.33)) that can be summed up as geometric series. Then the 
large- N behaviour follows by the saddle-point method. In massive models (non-zero 
gap) the relevant saddle points are complex roots of 

a$’( A ) = 0 I c l ~ r .  (1.1) 
They dominate the large- N behaviour of all physical quantities. For gapless theories, 
endpoints of integration ( A  = * C O )  govern the large-N regime. In the first case, the 
finite-N corrections are exponentially small in N and in the second case they are of 
power type. In both cases, closed-form expressions can be explicitly derived. In the 
transition between the two regimes, logarithmic terms also appear [6] (already with a 
one-step Bethe ansatz). 

The method presented in 0 2 is valid for any theory solvable by the Bethe ansatz 
where the ground state is formed by real roots. 

We apply this method to a large class of fundamental vertex models associated to 
simple Lie algebras. The N B A E  for all these models can be written systematically in 
Lie algebraic terms [ 121 (many-body integrable systems related to Lie algebras can be 
found in [13]). For the models associated to simply laced Lie algebras 
(An ,  D,, E6, E , ,  E8) (see table 1) we find a simple expression for the dominant finite-size 
corrections to the free energy: 

f N - f r = - r r / 6 N Z + o ( 1 / N 2 )  (1.2) 
for periodic boundary conditions. Here r stands for the rank of the algebra. 

predicted by modular invariance to be [ 141 

fN - fl = - T C / ~ N ’ + O (  1/ N2) 

The large-size behaviour of the free energy for a conformally invariant model is 

(1.3) 
where c is the central charge in the Virasoro algebra and PBC are used. Comparison 
between (1.2) and (1.3) shows that c = r for the fundamental vertex model associated 
to simply laced Lie algebras. Equation (1.2) also holds for the U(1)‘ symmetric model 
of [ le ]  and [ 151 in its gapless regime. Hence c is still equal to r although this model 
is not U( r + 1) invariant but only U( 1)‘ invariant. 

When the mass gap is non-zero in the thermodynamic limit conformal invariance 
is clearly absent. One finds in this case asymptotically degenerate eigenvalues for the 
transfer matrix [IC, 161. Their ratio can be related through standard arguments to the 
interfacial tension [IC].  We compute the interfacial tension ( S )  in this way for the 
model of [ le]  and [15] in § 4. I t  turns out that S follows from the zeros of an elliptic 
function (equation (4.19)). Explicit expressions of S for large and small anisotropies 
( y )  are derived (equations (4.221, (4.23) and (4.26)). The results presented generalise 
for this 4(24 - 1)-vertex model the formulae of Baxter for the six-vertex model ( 4  = 2) 

Scaling hypotheses predict that S should be related to the correlation length ,$ by 
[IC] .  

~ 7 1  

s,$= 1 (1.4) 
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Table 1. Simply laced Lie algebras 

I 2 3 n - 1  n 
An *-, , . . I . . "- 
D" 

E? 

I 2 1 4 5 

T 
7 
I 2 1 4 5 6 

T X  

in our units. (This relation is explicitly verified in six- and eight-vertex models [IC, IS]). 
Hence, as a by-product of our S calculation in 8 4 one obtains in addition using 
equation (1.4) the correlation length 5 for the q(2q - 1)-vertex model of [ l e ]  and [15]. 

2. Finite-size solution of nested Bethe ansatz models 

A method of computing finite-size corrections for integrable theories solvable by the 
nested Bethe ansatz ( N B A )  is presented in this section. Specific applications are 
presented in 9 4. 

Generally speaking, the free energy for such models for a large but finite number 
of sites N is 

L \ ( e ) =  - ( I / N )  log ~ \ , , , (~ )+O(e -S" ) .  (2.1) 

Here Amax is the maximum eigenvalue of the transfer matrix T ( e ) ,  8 is the spectral 
parameter and 6 > 0 is related to the next-to-leading eigenvalue of T (  e).  Then 
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where the functions 4(  z, a )  are given in § 3, k labels the steps of the N B A  (1 s k s r) ,  
and the = 1, .  . . , Pk are the roots of the N B A  equations 

(2.3) 

The parameters wfk = (a f ,  ak) and uA = ( w ,  c y k )  are given and they are related to roots 
and  weights of the underlying Lie algebra (see 9 3). The I;:’ are half-odd integers. 

It is convenient to introduce the functions 
1 PA 

~ ! W = ~ ( A , W J - ~  C C ~ ( A - A ; : ) , ~ ~ J  (2.4) 
k = I , h = l  

They are continuous functions of A for real A. At the roots of the N B A E  (2.3) 

fc’(Aj:’)  = (2ir/N)Ij:’ .  (2.5) 

Now define 

1 d t z ’  
gIk’( ,+)  =- -. 

N 2ir dA 

The half-odd integers I::’ form for fixed k a monotonic sequence for the antiferromag- 
netic vacuum 

IjAkll-Zj:)= + 1  l s k s r ,  l s j k s p k .  ( 2 . 7 )  
For excited states these sequences exhibit jumps for some values of j,: 

h ; ,A 1 

I;;;, - I;Ak’ = 1 + c S / k  ,,,, A ’ .  (2.8) 

The values of A;:’ associated to these missing half integers are called holes and are 
denoted by 6;”’: 

h =- I 

f‘2’(c9Lk’) = ( 2 n /  N ) ( 1  + I : : ) ) ) .  (2.9) 
When N goes to infinity, the p k  also tend to infinity for antiferromagnetic states 

and the Ajhk’  tend to have a continuous distribution for each value of k with density 

One finds from (2.5) and (2.6), for large N, 

Then (2.8)-(2.11) yield for large N 

(2.10) 

(2.11) 

(2.12) 

The NBA, equation (2.3), admit both real and  complex roots. We discuss in the present 
paper effects related to real roots. Taking the difference in that case between (2.3) for 
j, = lnTI and j, = I ,  yields in the N =CO limit 

(2.13) 
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or 

where 

K,/ (A)  = 2 ~ 4 ' ( A ,  ul,). (2.14h) 

The following relation was used to derive (2.13) and ( 2 . 1 4 ~ ) :  

(2.15) 

Here a, may be finite or infinite. Equations (2.13) and ( 2 . 1 4 ~ )  can be solved by the 
Fourier expansion 

(2.16) 

when a, = 00 or 

It is convenient to express the solutions of ( 2 . 1 4 ~ )  and (2.14b) in terms of the resolvent 
R l k ( A ) ,  i.e. the solution of the equation 

(2.17) 

One finds in Fourier space 

& ( x )  = [ ( l  - m--'I/, 1 s k, I <  r. (2.18) 

Explicit expressions for this inverse matrix are available for each specific model (§  4).  
Then the densities a'"(A) are 

(2.19) 

where 

(2.20) 

and 

c / , ( A  = 6$(A 1 - & , ( A  ). (2.21) 

Here ai"(A)  describes the root density for the antiferromagnetic vacuum at N =a, 
i.e. in the absence of holes. In the same limit the free energy per site is from (2.1), 
(2.2) and (2.15), 

(2.22) 
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Now the second term in (2.19) describes the hole contribution to the density of roots. 
The contribution to the free energy from a single hole at cb = O r )  is 

r ai 

A( cp) = i [ Rlk( A - cp)C$(  A + io, w k )  dA = i[ f $ ) ( c p  + i o )  + K,]. (2.23) 
k = l  J - a !  

The last equality follows from (2.6) and (2.20). K ,  is an  integration constant (see 3 4). 

~ , ~ ( e )  =fa) -fm. (2.24) 

Let us now consider the finite-size corrections to & ( e ) ,  i.e. 

One finds, with the help of (2.21), (2.2), (2.15) and (2.22), 

(2.25) 
k = l  J - a A  

We now study the difference c + Z ’ ( A ) -  a Z ’ ( A ) .  It follows, using (2.4), (2.6), (2.14~1) 
and the resolvent (2.18), that 

CT%)(A ) - & ’ ( A )  

(2.26) 

Equations (2.25) and (2.26) hold for the antiferromagnetic vacuum. In the presence 
of holes, one finds instead inside the brackets in (2.25) and (2.26) 

Now, inserting (2.26) into (2.25) yields 

(2.27) 

(2.28) 

where (2.23) was used. This formula (2.28) has the right structure in order to evaluate 
its large-N behaviour. It must be noticed that it is the sum of r terms, so one can 
apply essentially the same method as in [2] and [3] to each term separately. It can 
be noticed that a formula analogous to (2.28) holds for excited states: the large round 
bracket in the right-hand side must be replaced by (2.27). 

Generally speaking, it is possible to derive the large-N behaviour of any expression 
with the form 

where the function f ; ( ~ )  is given. Changing the integration variables in (2.29) to 
1, = f%’(p/ )  as defined by (2.4) yields 

(2.30) 



Finite-size corrections .for nested Bethe ansatz models 6029 

where 

t i l ’  = (2T/ N)( k + f) k = 1, 2, .  . . , p ,  + N(hO 

J -ai 

Fourier expanding the 6(z)  gives 

I = l  
a , f O  

where 

T!, = 5 dAfr(A)cr‘pl: exp(int$)(A)). 
-41 

Now, in order to find the dominant large-N behaviour, one can replace 

T!,+ Tk4’= I dAf;(A)u~’(A) exp(intg’(A)). 
ai 

-41 

(2.31) 

(2.32) 

(2.33) 

The right-hand side of (2.33) is exactly known from (2.18)-(2.21). One must take 

fr ( A  ) = - i[ tz’( A + i 6 )  + K , ]  

to compute finite-size corrections to the free energy. 

(2.34) 

For large n, Tkas (and T!,) are dominated by the stationary points where 

(2.35) 

These equations have finite complex solutions when the mass gap is non-zero (see [2] 
and [3] and § 4). When the model is gapless, A. = CO (see [4] and § 4) and the integral 
(2.33) is dominated for large n by its endpoints. In the former case (ho<m),  T!, is 
exponentially small in n and so is IN in N, i.e. 

zN - lexp(it,(Ao))lN (2.36) 

(plus power corrections). On the contrary, one finds power-like behaviour plus possible 
logarithmic corrections in the gapless regime. 

The method exposed here holds for any NBA state formed with real roots and 
eventually a finite number of complex roots. 

3. Integrable theories and semisimple Lie algebras 

We give in this section a non-exhaustive description of integrable models where the 
methods of § 2 apply. 

A deep connection exists between integrable theories and simple Lie algebras 
[ 1, 121. It is possible to associate an integrable vertex model to each representation of 
a simple Lie algebra. These models are invariant under the corresponding Lie group 
G, since this R matrix obeys 

[R(O),  g 0 g l  =o. (3.1) 
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Moreover, the structure of their B A E  looks like the one of their respective Dynkin 
diagram. It must be noticed that the B A E  are known to lead to the eigenvectors and 
eigenvalues of the transfer matrix only for a subset of models: those associated to 
U ( N )  [IC, 15, 191, S p ( 2 N )  [20] and  SO(2N)  [21] and  some others. However, it is 
plausible to assume the validity of these statements for all the semisimple Lie algebras. 
Moreover, the Dynkin diagram structure of the B A E  is not restricted to non-Abelian 
invariant models fulfilling (3.1). In the case of the model of [ l e ]  and  [15], G =  
U ( l ) “ - ’ x Z ,  and  the N B A E  have the structure of the Aq-, Dynkin diagram, i.e. the 
same structure as in the isotropic limit where G = SU(q) .  

Let us briefly describe the B A E  for the solutions of the non-Abelian symmetric 
models. We refer for the derivation of these equations (when they exist already) to 
[ l ,  15,19-211. 

The eigenvalues of the transfer matrix can be written as a sum of terms. The 
dominant one in the infinite volume limit ( N  + CO) is 

for 8 in the vicinity of 8 = 0, 181 < Bo. Here e l ,  . . . , O N  are given numbers describing 
inhomogeneities in the lattice [IC, 221. The w, are fundamental weights and the ak 
are the simple roots of the associated Lie algebra, whose rank is r. (a, p )  stands for 
the usual inner product in root space. The A::’( 1 < j ,  < p,,  1 s k r )  are solutions of 
the N B A E .  They admit the Lie algebraic expression 

Here the upper indices ( i )  label the steps in the nested Bethe ansatz. Each step is 
associated to a simple root a, .  The structure of (3.3) coincides with the respective 
Dynkin diagram: when two roots, say a1 and a, ,  are orthogonal, their associated 
parameters A::’ and A::’( 1 SJ/  s p I ,  1 S j ,  G p , )  are not directly coupled through (3.3) 
since ( a , ,  a,)  = 0. It must be noticed that due to the orthogonality of fundamental 
weights and simple roots [23] 

( U a ,  a , )  =;&, (a , ,  a , ) .  (3.4) 
The normalisation of the simple roots can be absorbed as a multiplicative factor 

In § 2 we dealt with the homogeneous models where 8, = 0 and w, = w for 1 < a G N. 
on the A;,”. 

Then 

z + i a  
4 ( z , a ) = i l o g -  

z - i a  

in the equations of 5 2. We have, for IIm z /  < a, 

(3.5) 

Here we take the cut of the logarithim in (3.5) such that 4(x, a) is a continuous 
function for real x and 4(0, a )  = T. I t  must be noticed that 
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Then (2.14a)-(2.16) and (3.6) yield for the kernel of the NBAE (2.14) 

'J/(') = -sgn[(aJ, exp[-((a]9 (3.7) 

['-'(x)]Jl = +sgn[(aJ, exp[-l(a,7 a/)xll' (3.8) 

with sgn(0) = 0. Therefore, one gets for the resolvent from (2.18) 

Hence, one has to invert this r x r matrix. This is not a formidable problem since it 
is a sparse matrix [24] whose characteristic diagram is precisely the Dynkin diagram 
of the corresponding Lie algebra. Explicit formulae for R l l ( x )  can be derived for each 
Lie algebra. One has for A,, 

sinh x( n + 1 - 1,) sinh(xl,) 
sinh x( n + 1 )  sinh x 

fiJl(x) = e-'x' (3.9) 

For D,, see [ lo]  and [21]. For E6, E, and E8, no general formula is known but Rjl(x) 
can be calculated explicitly. 

For non-simply laced Lie algebras, the ground state is formed by complex roots 
and hence the treatment of 0 2 needs to be generalised. 

In the U( l)'(q a 2) symmetric model of [ l e ]  and  [15], one finds an  A,-' structure 
for the NBAE although the model is not SU(q)  invariant. One must take for 4 ( z ,  a )  

sin(z + icy) 
sin( z - ia)  

4 ( z , a ) = i l o g  

or 

s i n h ( z + i a )  
sinh( z - i a  j 

4 ( z , a ) = i l o g  

(3.10) 

(3.11) 

depending on the anisotropy parameter, instead of (3.5). That is, the NBAE are given 
by (2.2) and (2.3) with (3.2) given by (3.10) or (3.11) and the Lie algebra parameters 

Let us conclude this section by deriving a few formulae that will be needed in the 
finite-size calculations of the next section. We start with the asymptotic behaviour of 
the vacuum density of roots w:)(A). One finds from the Fourier representations 

w k ,  wjk of Aq-1. 

(2.1 8)-(  2.20) 

Here A(x, c y )  

when (3.6) is 

is the Fourier transform of d ' (x ,  a ) .  So 

A(x, a )  = e-'ra'  

used and  

A(x, a )  = 
sinh x ( f r  - a )  

sinh f x r  

(3.12) 

(3.13) 

(3.14) 

when ( 3 . 1 1 )  holds. Equation (3.12) tells us that the large-A behaviour of &' (A)  is 
determined by the zeros of det[l - k ( x ) ]  closer to the real axis. These values are 
clearly I independent. One finds from (3.12) by the residue method 

(3.15) 
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Table2. The parameters K and m, (mass spectrum) for the models associated to simply 
laced Lie algebras. For D4, notice that m ,  = m, = f and then A = S , .  

Liealgebra K ml A 91 

271 XI 

f l + l  f l + l  
- sin-, 1 s I s  n 

n + l - /  
/ - n + l - /  - 

n + l  

+c*- 1 . l s l s n - 2  

n f 4  i ,  = 
1-5 9 I -  - 2 - 9 5 = i  

9 * = 3 - 9  -s 2-4 4 - 3  

(*) These values can be extracted from [ I21  

where 6>0. The parameters K and ml are given in table 2 for all models associated 
to simply laced Lie algebras. K is just 2rr times the length square of shortest simple 
root in the normalisation where [ 2 3 ]  

B( E,, E-,)  = -1 

and B ( x ,  y )  is the Killing form. The coefficients m, have the physical interpretation 
of particle masses in the context of the relativistic QFT with NBAE of the type ( 3 . 3 ) .  
The chiral-invariant fermionic models [ 81 provide explicit realisations with such Lie 
algebraic structures. In addition, the mass spectrum has the invariance A of the 
corresponding Dynkin diagram, i.e. the automorphisms of the Lie algebra [ 2 3 ] .  A is 
trivial or isomorphic to Z2 except for D4 where it is the permutation group of three 
elements S 3 .  

Although the detailed mass spectrum depends on the Lie algebra, it is true in all 
cases that m, increases monotonically going from the ends of the Dynkin diagrams to 
the middle. 

In the case of the U(l) '- '  symmetric model [ l e ,  151, (3.15) holds with the m, and 
K of the A,-symmetric theory renormalised by a factor 1/ y. 

4. Applications of finite-size computations 

4.1. Evaluation of the central charge for gapless models 

Let us compute the leading finite-size correction to the free energy for a system solvable 
by NBA in the gapless regime. When the ground state is filled with real solutions of 
the N B A E ,  the formalism of § 2 applies. As stated at the end of § 2 ,  the leading finite-size 
corrections are governed by the large-A behaviour of the integrand in ( 2 . 3 3 )  since we 
assume a zero gap. We know & ' ( A )  for large A from ( 3 . 1 4 )  and we obtain for t " ' ( A )  
(equation ( 2 . 6 ) )  

t $ ' ( A )  *-=a = 2 r r q r 8 ( A ) + ( m l / l r )  sgn(h)  e-K"' (4.1) 
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where 

(4.2) 

is usually a rational number. This information is enough to compute the dominant 
large-n behaviour of T f ,  from (2.33). It is convenient to use the integration variable 
t, = t c ' ( A , )  in (2.33). This yields for the free energy taking into account (2.28) 

TL(O) n-3c = s i n ( ~ O ) / m ' + O (  l / n 3 )  (4.3) 

where n is chosen such that q,n is an integer. Summation over a ,  and 1 yields, from 
(2.28) and (2.31), 

L N (  0 )  = -( 7rr/6N2) sin( K O )  (4.4) 

where we have used 5(2) = 7r2/6. Now, the free energy of a conformally invariant 
model with periodic boundary conditions in box of size L is [ 141 

fL = fT - .rrc/6L2 + smaller terms (4.5) 
L - X  

where c is the central charge value. However, one cannot blindly identify (4.5) and 
(4.4). One must first verify the rotational invariance at least for long distances. Let 
us analyse the spectrum of elementary excitations for low momentum and energy. The 
eigenvalue of log T( e)  is, for a hole at 4 + --CO in the Ith branch (1 s 1 s r )  from (2.33) 
and (4.1), 

i m, 
f i ( q )  -fi( --CO) = -- exp[ ~ ( q  + io ) ]  + ~ ( e ' " ) .  

*--X 7T 

Since the momentum operator is given here by 

P = -i log ~ ( 0 )  

one finds for this hole 

(4.6) 

(4.7) 

(we have subtracted the constant K ,  such that p (  -cc) = 0). In this context, the Hamil- 
tonian can be identified with 

H = -Re log T (  0 ) .  

SO we find for the energy 
(4.9) 

eK' sin(h.0) + O(e*"') MI & = -- 
*--X 7T 

e = p sin(K@)+O(p*).  (4.10) 

This indicates that we must renormalise the energy by a factor l/sin(KO) in order to 
have a relativistic dispersion law and hence rotational invariance for long distances. 
After this renormalisation 

P -0 

(4.11) 
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Now, one finds from (4.4) and (4.11) 

c = r  (4.12) 

i.e. the value of c equals the number of steps in the NBA. Each gapless step contributes 
by unity to the central charge. If there were some steps with a non-zero gap, they 
would give exponentially small corrections and no contribution to c. So the final result 
is that c equals the number of gapless steps of the N B A  when the vacuum is formed 
by real roots. 

4.2. Surface tension for a massive q(2q - 1)-vertex model 

Let us consider the finite-size corrections for the q(2q - 1)-vertex model of [ le]  and 
[lS].  In this model the links can be in q different states and the statistical weights are 
given in figure 1. For y 3 1, 28 + y fixed, the model has a long-range generalised 
ferroelectric order and the dominant configurations are formed mostly by vertices of 
type c ,  (for 8 > 0) and some cq-,  . There are q different predominant patterns following 
one from each other by shifting by one the state of all links. This generalises the 
six-vertex ( q  = 2) situation [IC]. The interfacial tension between domains of this type 
is then related by standard arguments [ lc]  to the ratio between the asymptotically 
degenerate largest eigenvalues of the transfer matrix. In this model we have q asymptoti- 
cally degenerate eigenvalues [21]. As ( O S  s s q - 1) and 

a 

e x p l e  sgn ( a -  bll sinh 1 c , - ~  Tb  
l b  
' b  

a 

sinh 1 8 + g ) = a  

a 

(4.13) 

Figure 1. Statistical weights for the allowed vertex configurations in the model of [ le ]  and 

~151.  
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Now, one will expect 
. A ~ ( ~ ) / A ~ ( o )  = e x p ( 2 7 ~ i s / q ) + o ( e - " ~ )  (4.14) 

where S is the interfacial tension divided by the absolute temperature. 
Let us now apply the method of 0 2 to explicitly compute S. We start by looking 

at the stationary points of the integral (2.33) and (2.34), i.e. the zeros of the density 
of roots [ l e ,  151 

s cos(2mA) 
T q ,,,=I sinh(my,) 

g:'(A) ='( 1 - - 1 2  

This function can be expressed in terms of elliptic functions. One finds 

(4.15) 

(4.16) 

where e,( z I T) can be found in [25]. From general properties of the 6 functions, it 
follows that the solutions of 

(4.17) & ' ( A )  = O  s = 1 ,2 , .  . . , q -  1 

have the form 

A,/ 7~ = -4 + i y q / 4 7 ~  + i A s (  y) /  7~ (4.18) 
where A,(  y )  = -Aq-,( y) .  For q = 2 we have A I (  y )  = 0 and we recover the result of [2]. 

A, fulfils the equation 

This equation can easily be solved for small y and for large y. One finds 

Then, using (4.16), 

M,(  y) = exp[it$'(h,)] = 1 - 4 T  exp(- .rr2yq) + 8 T2 exp( -2n2/ yq) 
Y - 0  

+8T(1+  T' )  e x p ( - 3 ~ * / y q ) + O ( e x p ( - 4 ~ ~ / y q ) )  
where T = sin n s / q  and 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

e 'yS +higher orders . ) 
exp[-2y(q-s)] s2+2qs -q2  - + 

S ( 4  - SI2  

(4.23) 
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Now the saddle-point method applied to (2.33) and (2.34) yields 

TL 8 ) = ( M I  1 ( Dl / d n 1 [ 1 + 0 ( 1 / n ) I (4.24) 

where DI is n independent. Then the finite-size corrections to the free energy ( L N )  
will be dominated by the larger M I ,  1 s 1 s q. Equations (4.22) and (4.23) indicate that 
M, = M q - l  > M ,  for 2 s  1 

L^. ( 0 )  = ( D , / J N ) M , ( Y ) ~ .  (4.25) 

n >) 1 

q -2, so we have 

Comparison of (4.14) and (4.25) yields for the interfacial tension 

s = -log M,( y ) .  (4.26) 

The series (4.22) and (4.23) indicate that this quantity is always positive. It grows 
linearly with y for large y and vanishes as e x p ( - q / y )  in the critical limit y+O+. 
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